

MCS Total Solutions for all your Control Needs

Water Cooled Chiller Upgrade Package(s)

This brochure describes a standard upgrade package for the Turbocor series chillers. Each control upgrade installation is unique. It may be necessary to add additional options to the standard upgrade as described in this brochure.

Fill out the brief questionnaire in the back of this brochure and forward to your sales representative for an estimate.

Package with Industrial Control Panel

Concerns:

- · Old controls failed
- Wanted controls that were easier to understand and greater reliability, plus better and clear information

Equipment:

- Smardt and other brands Water Cooled Chillers
- One to Four Turbocor Compressors
- · One to Four Staging Valves
- Load balancing EXV control
- Modulating condenser water valve

Steps Taken:

- · Remove existing controls
- · Install MCS controls
- Reprogram boards for communication
- Provide on-site training and support for contractor to better understand MCS controls.

Results:

One Smardt Chiller upgraded with MCS controls and one satisfied customer who is very happy with all the information and data available compared to the competitor's controls.

MCS MAGNUM with TOUCHSCREEN

Description

The MCS-TOUCH-15.4 capacitive touchscreen interface designed to simplify user access with the MCS-Magnum and MicroMag utilizing MCS-Connect to provide both graphics and service mode access to technicians. Input method: Finger, glove, stylus.

Highly accurate and does not require calibration - easy to clean glass surface. Works outdoors, bright screen, water resistant, Exceptional Optics - 1280x800 resolution, sharp and vibrant images.

MCS-TOUCH-15.4 comes preloaded with the MCS-CONNECT program that allows you to view the 'unit's status', 'extended history', 'alerts', 'alarms', setpoints, and more, all in a user-friendly graphic format.

Also, with a proper authorization code, changes can be made to the setpoints, sensor offsets, schedule, etc.

With Internet Connection:

The user is able to email 'ALARM ALERTS' back to a technician. The emails will include 'SAVE DIAGNOSTIC DATA' to help troubleshoot the alarm.

Also with the internet connection you can send 'SMS TEXT MESSAGES' with job site name and alarm, message only.

Without Internet Connection:

The user can save 'ALARM ALERT DATA' to a USB memory stick. Also, you can save 'EXTENDED HISTORY DATA to a USB memory stick for troubleshooting. This can be done with or without internet connection.

The Touchscreens are suitable for installation, both indoor and outdoor. Utilizing a gasket for an environment seal provides the unit with a NEMA 4 rating if installed in a <u>NEMA4 enclosure</u>.

Specifications

Dimensions...... 17"L x 12.11"W x 3.228"H

Mounting

VERSA Mount

Door Mount 15.75"L x 10.875" cutout

10 mount studs thru customers encl. HT800 Cellular Silicone Gasket

NEMA 4 IP66 rated

Indoor or outdoor (Mounted in Nema4 Enclosure)
75 x 75 mm:100 x 100 mm (indoor only)

16.2 Million Colors 1280x800 Resolution

View Angle 70°U, 70°D, 70°L, 70°R

Capacitive Stylus pen

White LED Backlight (Min Life 50,000 Hrs) Luminance Min. 350 Min. 450 Typical

Touchscreen Surface........UV Degradation Protection
Operating Temperature -22°F to 176°F (-30°C to +80°C)
Operating Humidity.......90 %RH (Non Condensing)
Storage Temperature-22°F to 176°F (-30°C to +80°C)

Power Input 12VDC regulated

Motherboard-Rev 4.0...... Freescale i.MX6 Dual Core 800mhz

2Gb of 512mhz DDR3 RAM memory 16Gb of eMMC Flash memory 10m/100m/1G Ethernet

1 Micro-SD Slots

1 USB On-The-Go (OTG)

2 USB Host 2.0

Real Time Clock (RTC) w/ Battery 3 RS485 communication ports

(max. baud rate 115k) Mini PCle Interface

Parts Included

90W 12VDC Power Supply

Input Voltage: 88 VAC to 264 VAC
Output Voltage: 12 VDC @ 7.5 Amps
Input Current: 3 A / 115 AC - 1.6 A / 230AC
Output Rated Current: 7.5 A

Dulpul Raleu Current. 7.5A

Size: 2.76" x 3.54" x 2.14 (W*H*D) (70*90*54.5mm)

- 7ft CAT 5e Crossover Patch Cord, Orange
- DIN Rail Mounting Kit for 90W 12VDC Power Supply

Packaging

Ship Weight 8.73 lb (approx)

Box Dimensions................. 16" x 12.5" x 8" (approx)

Options

Versa Mount

Showing customer supplied arm

MCS Industrial Control Panel

Part # MCS-MAGNUM-15.4-12

Description

The MCS-MAGNUM-15.4-12 consists of a MCS-MAGNUM controller along with a Touchscreen 15.4 in display.

The MCS-TOUCH-15.4 capacitive touchscreen interface designed to simplify user access with the MCS-Magnum and MicroMag utilizing MCS-Connect to provide both graphics and service mode access to technicians. Input method: Finger, Stylus or *Glove.

Highly accurate and does not require calibration - easy to clean glass surface. Works outdoors, bright screen, water resistant, Exceptional Optics - 1280x800 resolution, sharp and vibrant images.

MCS-TOUCH-15.4 comes preloaded with the MCS-CONNECT program that allows you to view the 'unit's status', 'extended history', 'alerts', 'alarms', setpoints, and more, all in a user-friendly graphic format. The MCS-TOUCH-15.4-12 can connect up to 60 MCS controllers and supports RS485 or Ethernet networking.

The MCS-MAGNUM-N is a durable microprocessor based controller designed for the hostile environments in the HVAC/R industry. It is designed to be the primary manager of the package it is controlling. The Magnum provides flexibility with setpoints and control options that can be selected prior to commissioning a system or when the unit is live and functioning. Displays, alarms and other interfaces are accomplished in a clear and simple language that informs the user as to the status of the controller.

The MCS-MAGNUM-N is a UL Recognized Component under UL File #169780 and also ROHS compliant.

Complementing the Magnum micro controller are a variety of MCS expansion boards.

Packaging

MCS-SHIELDWIRE-GROUNDING multi-terminal splicing connector with 9"- 16 awg wire with ring terminal (package of 2).

Specifications

MCS-Magnum Controller

MCS-TOUCH-15.4 - (Capacitive Touchscreen
Dimensions	17"L x 12.11"W x 2"H
LCD Screen	15.4" (16:10 Diagonal)
	1280 x 800 Resolution
	5-Wire resistive touch w/Stylus pen
Gasket	HT800 Cellular Silicone
	NEMA 4 IP66 rated
	Glare/Anti-Reflection ≤1.5%
	22°F to 176°F (-30°C to +80°C)
	90 %RH (Non Condensing)
	22°F to 176°F (-30°C to +80°C)
Motherboard-Rev 4.0	Freescale i.MX6 Dual Core 800mhz
	2Gb of 512mhz DDR3 RAM memory
	16Gb of eMMC Flash memory
	10m/100m/1G Ethernet
	1 Micro-SD Slots
	2 USB Host 2.0
	Real Time Clock (RTC) w/ Battery
	3 RS485 communication ports
Touchscreen Surface	UV Degradation Protection

Parts Included

90W 12VDC Power Supply

Input Voltage: 88 VAC to 264 VAC Output Voltage: 12 VDC @ 7.5 Amps Input Current: 3 A / 115 AC - 1.6 A / 230 AC Output Rated Current: 7.5A

Size: 2.76" x 3.54" x 2.14 (W*H*D) (70*90*54.5mm)

- 7ft CAT 5e Crossover Patch Cord, Orange
- Kit of (8) #6 x 1" Phillips Pan head Zinc Plated Steel Screws

MCS Industrial Control Panel

MCS-MAGNUM-N-12

The MCS-MAGNUM-N-12 is a durable microprocessor based controller designed for the hostile environments in the HVAC/R industry. It is designed to be the primary manager of the package it is controlling.

The Magnum provides flexibility with set points and control options that can be selected prior to commissioning a system or when the unit is live and functioning. The TouchScreen and MCS-CONNECT provide a clear and simple language that informs the user as to the status of the controller.

Touchscreen

he **MCS-TOUCH-15.4** capacitive touchscreen interface designed to simplify user access with the MCS-Magnum and MicroMag utilizing MCS-Connect to provide both graphics and service mode access to technicians. Input method: Finger, Stylus or *Glove.

Highly accurate and does not require calibration - easy to clean glass surface. Works outdoors, bright screen, water resistant, exceptional Optics - 1280x800 resolution, sharp and vibrant images.

MCS-TOUCH-15.4 comes preloaded with the MCS-CONNECT program that allows you to view the 'unit's status', 'extended history', 'alerts', 'alarms', setpoints, and more, all in a user-friendly graphic format. The **MCS-TOUCH-15.4**-12 can connect up to 60 MCS controllers and supports RS485 or Ethernet networking.

Standard screens include:

- System Overview Screen
- · Compressor Overview Screen
- · Evaporator/Condenser Overview Screen
- Documents

SYSTEM OVERVIEW

COMPRESSOR OVERVIEW

EVAPORATOR CONDENSER OVERVIEW SCREEN

OPTIONAL 'GRAPHS OVERVIEW SCREEN IN REAL TIME'

^{*} The glove needs to have a conductive fabric or material to work with cap touchscreens.

MCS-SI-BASE

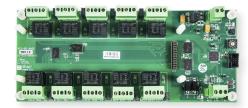
The MCS-SI-BASE provides a flexible and cost effective way to allow sensor input and analog output expansion for the MCS MAGNUM. Each MCS-SI-BASE has a stand-alone microprocessor which communicates with the MCS MAGNUM over the MCS-I/O port at 38,400 baud. All data is check summed with auto error cor-

rection. Because communication is over a RS-485 long distance two-wire differential network transmission system, the MCS-SI-BASE may be located up to 5,000 feet away.

MCS-SI-BASE board can be powered by a 12VDC regulated power supply and has a automatic power fail reset system.

MCS-SI-EXT mounted to MCS-SI-BASE

MCS-SI-EXT


The MCS-SI-EXT provides a flexible and cost effective way to allow sensor input and analog output expansion for the MCS MAGNUM.

Each MCS-SI-EXT can be paired with a MCS-SI-BASE to double the number of inputs and outputs. Each

MCS-SI-EXT board is powered by the MCS-SI-BASE board once it is stacked on top.

MCS-RO-BASE

The MCS-RO-BASE provides a flexible and cost effective way to allow relay output expansion for the MCS-MAGNUM. Each MCS-RO-BASE has a stand-alone microprocessor which communicates with a Magnum/Micromag over the MCS-I/O port at 38,400 baud. All data is check summed with auto error correction.

Because the communication is over a RS-485 long distance two-wire differential network transmission system, the MCS-RO-BASE may be located up to 5,000 feet away. The MCS-RO-BASE board is powered by a 12VDC regulated power supply.

MCS-RO-EXT mounted to MCS-RO-BASE

MCS-RO-EXT

The MCS-RO-EXT provides a flexible and cost effective way to allow relay output expansion for the MCS MAGNUM.

Each MCS-RO-EXT can be paired with a MCS-RO-BASE to double the number of outputs. MCS-RO-EXT board is powered by the MCS-RO-BASE board once it is stacked on top.

MCS-PRESSURE TRANSDUCERS

The MCS Pressure Transducers are one of the most economical and durable options on the market for dealing with high-pressure industrial applications.

In addition to being CE and UL approved, MCS transducers are capable of surviving high vibration. They include a cavity built out of solid 17-4 PH stainless steel 1/4" SAE Female Flare fitting & Schrader valve; 7/16-20 UNF pipe thread which creates a leak-proof, all metal sealed system that makes the transducers ideal for use with rugged HVAC environments.

MCS-T-100 Temp Sensor

An extremely fast acting temperature sensor built for demanding environments. It is ideal for high moisture locations with continuous freeze and thaw cycles. The sensor is potted with a thermally conductive RTV Cure Silicon Adhesive to guarantee durability and response. Its high accuracy allows for interchangeability in the field. The large resistance range allows the use of over 1000' of cable with no noticeable effect. The MCS-T100 sensor has the ability to move from 32°F to 212°F in approximately 10 to 15 seconds.

MCS-Wells/Tubes

The MCS-WELL was designed to be used with the MCS-T100 temperature sensor, although it has other applications. It is used in the 30HXC series chillers in the chilled water and condenser water lines. It comes prefilled with heat conductive compound to aid in temperature to the sensor.

The **MCS-TUBE** can be epoxied to a discharge or suction line on the 30HXC series chillers in order to obtain temperature readings without the use of a well. It was designed to be used with the MCS-T100 temperature sensor and comes pre-filled with heat conductive compound to aid in transferring temperature to the sensor.

MCS-EPOXY

- Pre measured resins and hardeners in one tube
- Easy to use bonds, seals, plugs, molds and rebuilds
- No special tools needed
- Can even harden under water

Pressure tested to 1300 psi
Temperatures up to 500 degree F
• Color Gray
• Density 15.9 lb/gal (1.9 g/cc)
Hardness (Shore D) 85
Tensile Strength 6000 psi
Compressive Strength 18.000 psi
 Modulus of Elasticity 6 x 105 psi
Shear Strength700 psi

MCS-VOLTAGE-3PH

The MCS-VOLTAGE-3PH measures AC voltage between 200-600 AC. It is designed to monitor the voltage of each phase of the main input power to the unit. The MCS-VOLTAGE-3PH sensor provides three separate DC voltage outputs that correspond to the AC voltage it is measuring.

MCS-PHASE

The **MCS-PHASE** is a programmable 3-phase line voltage monitor with 25-fault memory, high temperature LCD display, easy setup and clear diagnostic readout of system faults. The MCS-PHASE was specifically designed to protect motors and other 3-phase loads from premature failure and damage due to common voltage faults such as unbalance, over/under voltage, phase loss, reversal, incorrect sequencing and rapid short cycling.

MCS-USB-RS485

The MCS-USB-RS485 is a USB to RS485 cable that provides a fast simple way to connect a MCS-MAGNUM to a Laptop or PC.

The MCS-USB-RS485 cable contains a small internal electronic circuit board, which converts USB to RS485 with LED indicators for transmit (TX=Red) and receive (RX=Green).

MCS-EXV-DRIVER

The MCS-EXV-DRIVER is used for the positioning and control of Sporlan, Alco, Carel, and Danfoss bipolar expansion valves using an analog input of 0-10 VDC (0 VDC = 0% valve opening, 10 VDC = 100% valve opening). The MCS-EXV-DRIVER also supports overdriving on full opened and full closed voltage signals. The display decimal notifies when overdriving by blinking.

MCS-RS-485 EXTENDER

For those installations requiring an RS-485 port to be accessible without the necessity of opening the Control Cabinet door, MCS offers the part shown above.

The MCS-RS-485-EXTENDER mounting plate can mount on the outside of your enclosure and plugs into the RS-485 port on the back of the keypad.

A removable three-position terminal block is provided for easy wiring. to the keypad.

MCS-SEHI/SERI

The MCS-SEHI/SERI are Electronically Operated Step motor flow control valves, intended for the precise control of liquid refrigerant flow. Synchronized signals to the motor provide discrete angular movement, which translates into precise linear positioning of the valve piston. Valve pistons and ports are uniquely characterized, providing improved flow resolution and performance. The MCS-SEHI/SERI valves are easily interfaced with MCS microprocessor based controllers.

BMS GATEWAY

The MCS-BMS-GATEWAY is a microprocessor based communication device that provides translation from Bacnet IP, Bacnet MSTP, Modbus IP, Lontalk, or Johnson N2 communication interface. Information that can be transmitted includes the status of control points, alarm information, digital inputs, analog inputs or setpoints.

The MCS-BMS-GATEWAY protocol is field selectable by setting jumper on the device. Using **MCS-CONFIG** and the CONFIG files for the MCS-MAGNUM, you can automatically create the CSV files that is required by the MCS-BMS-GATEWAY.

Relay Outputs

#	Output Name	Туре	Description			
M-1	SPAREM-1	Standard	Relay output not used			
M-2	SPAREM-2	Standard	Relay output not used			
M-3	SPAREM-3	Standard	Relay output not used			
M-4	SPAREM-4	Standard	Relay output not used			
M-5	SPAREM-5	Standard	Relay output not used			
M-6	Cmp1I-Lock	Standard	Comp 1 J2 TurboCor Interlock			
M-7	Cmp2I-Lock	User Logic	Comp 2 J2 TurboCor Interlock			
M-8	Cmp3I-Lock	User Logic	Comp 3 J2 TurboCor Interlock			
M-9	Warning	Standard	Warning Light: unit is in a safety condition prior to a safety shutdown			
M10	Alarm	Standard	Alarm Light: unit is in a safety shutdown			
1-1	Comp 1	Step w\ EXV	Compressor 1 Run Enable			
1-2	SPARE1-2	Standard	Relay output not used			
1-3	SPARE1-3	Standard	Relay output not used			
1-4	SPARE1-4	Standard	Relay output not used			
1-5	SPARE1-5	Standard	Relay output not used			
1-6	SPARE1-6	Standard	Relay output not used			
1-7	SPARE1-7	Standard	Relay output not used			
1-8	SPARE1-8	Standard	Relay output not used			
1-9	SPARE1-9	Standard	Relay output not used			
1-10	SPARE1-10	Standard	Relay output not used			
2-1	Comp 2	Step w\ EXV	Compressor 2 Run Enable			
2-2	SPARE2-2	Standard	Relay output not used			
2-3	SPARE2-3	Standard	Relay output not used			
2-4	SPARE2-4	Standard	Relay output not used			
2-5	SPARE2-5	Standard	Relay output not used			
2-6	SPARE2-6	Standard	Relay output not used			
2-7	SPARE2-7	Standard	Relay output not used			
2-8	SPARE2-8	Standard	Relay output not used			
2-9	SPARE2-9	Standard	Relay output not used			
2-10	SPARE2-10	Standard	Relay output not used			
3-1	Comp 3	Step w∖ EXV	Compressor 3 Run Enable			
3-2	SPARE2-2	Standard	Relay output not used			

Relay Outputs

#	Output Name	Туре	Description			
3-3	SPARE2-3	Standard	Relay output not used			
3-4	SPARE2-4	Standard	Relay output not used			
3-5	SPARE2-5	Standard	Relay output not used			
3-6	SPARE2-6	Standard	Relay output not used			
3-7	SPARE2-7	Standard	Relay output not used			
3-8	SPARE2-8	Standard	Relay output not used			
3-9	SPARE2-9	Standard	Relay output not used			
3-10	SPARE2-10	Standard	Relay output not used			
4-1	Cmp1Alarm	Standard	Comp 1 In Alarm Output			
4-2	Cmp2Alarm	Standard	Comp 2 In Alarm Output			
4-3	Cmp3Alarm	Standard	Comp 3 In Alarm Output			

Sensor Inputs

#	Output Name	Туре	Description			
M-1	ChilWtrln	MCST100	Chilled Water In Temperature			
M-2	ChilWtrOut	MCST100	Chilled Water Leaving Temperature			
M-3	CndWtrIn	MCST100	Condenser water incoming temperature			
M-4	CndWtrOut	MCST100	Condenser water leaving temperature			
M-5	CndLevel	User Defined	Condenser Level Sensor			
M-6	LoPsi SW 1	DIGITAL	Mechanical Low Psi Switch Comp 1			
M-7	HiPsi SW 1	DIGITAL	Mechanical High Psi Switch Comp 1			
M-8	LoPsi SW 2	DIGITAL	Mechanical Low Psi Switch Comp 2			
M-9	HiPsi SW 2	DIGITAL	Mechanical High Psi Switch Comp 2			
M10	LoPsi SW 3	DIGITAL	Mechanical Low Psi Switch Comp 3			
M11	HiPsi SW 3	DIGITAL	Mechanical High Psi Switch Comp 3			
M12	CndFlow	DIGITAL	Monitors the condenser flow			
M13	ChwFlow	DIGITAL	Monitors the chilled water flow			
M14	Phaseloss	DIGITAL	Phase loss: phase imbalance			
M15	Run/Stop	DIGITAL	Run/Stop/Hand Switch			
M16	Emg/Stop	DIGITAL	Emergency Stop Switch			

Sensor Inputs

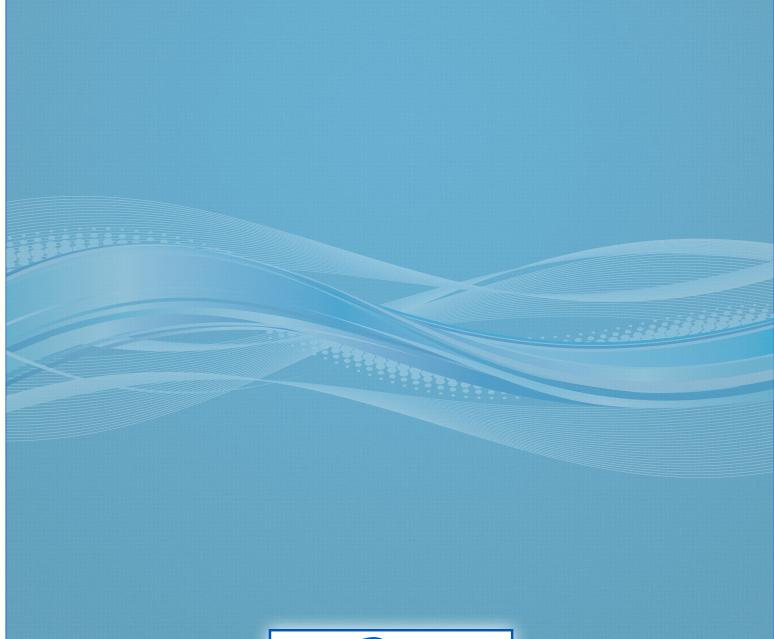
#	Output Name	Туре	Description			
1-1	Cmp1 Fault	TurboCorFault	Compressor 1 Fault Message			
1-2	Ctrl Mode1	ModbusHex	Compressor 1 Control Mode			
1-3	IGV Open%	MODBUS	Inlet Guide Vane%-Compressor 1			
1-4	SuctPsi 1	MODBUS	Suction Pressure - Compressor 1			
1-5	DiscPsi 1	MODBUS	Discharge Pressure - Compressor 1			
1-6	CavityTmp1	MODBUS	Cavity Temperature-Compressor 1			
1-7	InvertTmp1	MODBUS	Inverter Temperature-Compressor 1			
1-8	ChokSpeed1	MODBUS	Choke Speed-Compressor 1			
1-9	SurgSpeed1	MODBUS	Surge Speed-Compressor 1			
1-10	ActSpeed1	MODBUS	Actual Speed-Compressor 1			
1-11	ComPSIRat1	MODBUS	Compressor 1 Pressure Ratio			
1-12	Cmp1Amps	MODBUS	Compressor 1 Amperage			
1-13	M IGV1STPS	MODBUS	Inlet Guide Vane Steps-Compressor 1			
1-14	SPARE1-14	SPARE	Sensor input not used			
1-15	SPARE1-15	SPARE	Sensor input not used			
1-16	SPARE1-16	SPARE	Sensor input not used			
2-1	Cmp2 Fault	TurboCorFault	Compressor 2 Fault Message			
2-2	Ctrl Mode2	ModbusHex	Compressor 2 Control Mode			
2-3	IGV Open%	MODBUS	Inlet Guide Vane%-Compressor 2			
2-4	SuctPsi 2	MODBUS	Suction Pressure - Compressor 2			
2-5	DiscPsi 2	MODBUS	Discharge Pressure - Compressor 2			
2-6	CavityTmp2	MODBUS	Cavity Temperature-Compressor 2			
2-7	InvertTmp2	MODBUS	Inverter Temperature-Compressor 2			
2-8	ChokSpeed2	MODBUS	Choke Speed-Compressor 2			
2-9	SurgSpeed2	MODBUS	Surge Speed-Compressor 2			
2-10	ActSpeed2	MODBUS	Actual Speed-Compressor 2			
2-11	ComPSIRat2	MODBUS	Compressor 2 Pressure Ratio			
2-12	Cmp2Amps	MODBUS	Compressor 2 Amperage			
2-13	M IGV2STPS	MODBUS	Inlet Guide Vane Steps-Compressor 2			
2-14	SPARE2-14	SPARE	Sensor input not used			
2-15	SPARE2-15	SPARE	Sensor input not used			
2-16	SPARE2-16	SPARE	Sensor input not used			

Sensor Inputs

#	Output Name	Туре	Description				
3-1	Cmp3 Fault	TurboCorFault	Compressor 3 Fault Message				
3-2	Ctrl Mode2	ModbusHex	Compressor 3 Control Mode				
3-3	IGV Open%	MODBUS	nlet Guide Vane%-Compressor 3				
3-4	SuctPsi 2	MODBUS	Suction Pressure - Compressor 3				
3-5	DiscPsi 2	MODBUS	Discharge Pressure - Compressor 3				
3-6	CavityTmp2	MODBUS	Cavity Temperature-Compressor 3				
3-7	InvertTmp2	MODBUS	Inverter Temperature-Compressor 3				
3-8	ChokSpeed2	MODBUS	Choke Speed-Compressor 3				
3-9	SurgSpeed2	MODBUS	Surge Speed-Compressor 3				
3-10	ActSpeed2	MODBUS	Actual Speed-Compressor 3				
3-11	ComPSIRat2	MODBUS	Compressor 3 Pressure Ratio				
3-12	Cmp2Amps	MODBUS	Compressor 3 Amperage				
3-13	M IGV2STPS	MODBUS	Inlet Guide Vane Steps-Compressor 3				
3-14	SPARE2-14	SPARE	Sensor input not used				
3-15	SPARE2-15	SPARE	Sensor input not used				
3-16	SPARE2-16	SPARE	Sensor input not used				
4-1	EvapPsi	MCS-200	Evaporator Pressure				
4-2	DiscPsi 1	MCS-500	Discharge Pressure 1				
4-3	DiscPsi 2	MCS-500	Discharge Pressure 2				
4-4	DiscPsi 3	MCS-500	Discharge Pressure 3				
4-5	LiqPsi	MCS-500	Liquid Pressure				
4-6	SuctTmp 1	MCST100	Suction Temperature - Compressor 1				
4-7	SuctTmp 2	MCST100	Suction Temperature - Compressor 2				
4-8	SuctTmp 3	MCST100	Suction Temperature - Compressor 3				
4-9	DiscTmp 1	MCST100	Discharge Temperature - Compressor 1				
4-10	DiscTmp 2	MCST100	Discharge Temperature - Compressor 2				
4-11	DiscTmp 3	MCST100	Discharge Temperature - Compressor 3				
4-12	LiqTmp	MCST100	Liquid Temperature				
4-13	Disable 1	DIGITAL	Turns Off Compressor 1				
4-14	Disable 2	DIGITAL	Turns Off Compressor 2				
4-15	Disable 3	DIGITAL	Turns Off Compressor 3				
4-16	Ambient	MCST100	Outdoor Air Temperature				

Sensor Inputs

#	Output Name	Туре	Description				
5-1	Net R/S	BMS RUN	Building Management interface Run/Stop				
5-2	NetReset	BMS CW RSET	Building Management interface target reset				
5-3	NetDmdLmt	BMS Dmd FLA%	Building Management interface for Demand %				


Analog Outputs

#	Output Name	Description		
M-1	Exv%	Electronic Expansion Valve Control Signal		
M-2	StgValve1%	Compressor 1 Staging Valve		
M-3	StgValve2%	Compressor 2 Staging Valve		
M-4	StgValve3%	Compressor 3 Staging Valve		
1-1	Demand 1%	Compressor 1 Speed Demand		
1-2	SPARE1-2	Analog input not used		
1-3	SPARE1-3	Analog input not used		
1-4	SPARE1-4	Analog input not used		
2-1	Demand 2%	Compressor 2 Speed Demand		
2-2	SPARE2-2	Analog input not used		
2-3	SPARE2-3	Analog input not used		
2-4	SPARE2-4	Analog input not used		
3-1	Demand 3%	Compressor 2 Speed Demand		
3-2	SPARE2-2	Analog input not used		
3-3	SPARE2-3	Analog input not used		
3-4	SPARE2-4	Analog input not used		

Water Cooled Information

Сс	ompany:				Phone:				
Na	ame:	Title:			Email:				
Мс	obile:		Jobsite	ə:					
	Chiller Manufacturer	Chiller Model Number			Chiller Serial Number			Refrigerant Type	
	How are the new controls from MCS How many Circuits? Ho	S provided: In MCS Control Enclosure ow many compressors per circuit?			Field mount new boards in existing c			xisting cabi	abinet
1.	Compressor Model(s): Comp #1:		Comp #2:		Comp#3		Comp#4	:	
2. What is the compressor's Full Load Amps (FLA)? Comp #1: Comp #2: Com 3. Does / Will unit have a refrigerant Level Sensor Yes No If no, MCS will control If yes, is the Level Sensor located on: Evaporator Condenser Level Sensor Model: Signal Output?						on Suction Su			
4.	What model EXVS will you be using	for: refrigerant leve	l/superhea	t control?	Н	ow many EXV	S?		
5.	Does / Will you be using a staging va (comes off the discharge of compressor B If yes, what model valves? Comp #								
6.	Does / Will you be using a (LBV) load (comes off the discharge of compress	d balancing valve (a	ıka hot gas	valve) on the	unit? Yes	No	·		
7.	Will MCS control the Condenser?	Yes No	Condens	er type?					
	Will the Condenser Water Po If Air Cooled, Common Cond If yes, how many fans?	denser? Yes	No					Yes	No
8.	Will MCS control the Evaporator?	Yes N	lo <i>If yes,</i>	1 or 2 pumps	? VFD's?	Yes	No		
9.	Is there an Economizer on this chille	er? Yes	No 7	Type of Econor	mizer?				
	If 'None', what type of econo contro (EXV modulated based on econo s								
10.	Will the unit be communicating to B	MS? Yes	No V	Vhat Protocol	will be used to BMS	5?			

COMMENTS (is there any other information we should know?):

5580 Enterprise Pkwy., Fort Myers, FL 33905 Office: 239-694-0089 • Fax: 239-694-0031 www.mcscontrols.com